
Kosmas Kosmopoulos Application development with XML and Java

Application Development Application Development
with XML and Javawith XML and Java

Lecture 2

Review of XML Syntax,
DTD, SML Schema

Kosmas Kosmopoulos Application development with XML and Java

ValidityValidity

• One of the important innovations of
XML is the ability to place
preconditions on the data the
programs read, and to do this in a
simple declarative way.

• XML allows you to say that every Order
element must contain exactly one Customer
element, that each Customer element must
have an id attribute that contains an XML
name token, that every ShipTo element must
contain one or more Streets, one City, and
one Postcode, and so forth.

• Checking an XML document against
this list of conditions is called
validation. Validation is an optional
step but an important one.

• There is more than one language in
which you can express such
conditions. Generically, these are
called schema languages, and the
documents that list the constraints are
called schemas.

Kosmas Kosmopoulos Application development with XML and Java

DTDDTD-- Element DeclarationsElement Declarations

• In order to be valid according to a
DTD, each element used in the
document must be declared in an
ELEMENT declaration. For example,

<!ELEMENT Name (#PCDATA)>

• Elements that can have children are
declared by listing the names of their
children in order, separated by
commas. For example,

<!ELEMENT Order (Customer, Product,
Subtotal, Tax, Shipping, Total)>

• Attach
– a question mark after an element name in

the content model to indicate that the
element is optional

– an asterisk after the element name to
indicate that zero or more instances of
the element may occur at that position,

– a plus sign to indicate that one or more
instances of the element must occur at
that position

<!ELEMENT ShipTo (GiftRecipient?,
Street+, City, Postcode)>

Kosmas Kosmopoulos Application development with XML and Java

DTD DTD -- AttributesAttributes

• A DTD also specifies which attributes
may and must appear on which
elements. Each attribute is declared in
an ATTLIST declaration which
specifies:
– The element to which the attribute

belongs
– The name of the attribute
– The type of the attribute
– The default value of the attribute

<!ATTLIST Customer id ID #REQUIRED>

• DTDs define ten different types for
attributes

• Most parsers and APIs will tell you
what the type of an attribute is if you
want to know, but in practice this
knowledge is not very useful.

• DTDs allow four possible default
values for attributes

Kosmas Kosmopoulos Application development with XML and Java

Document Type Document Type
DeclarationsDeclarations

• Documents are associated with
particular DTDs using document type
declarations.

• The document type declaration is
placed in the instance document’s
prolog, after the XML declaration but
before the root element start-tag. For
example,

<?xml version="1.0" encoding="ISO-
8859-1"?>

<!DOCTYPE Order SYSTEM "order.dtd">
<Order> ...

• DTDs are not just about validation.
They can also affect the content of the
instance document itself. In particular,
they can:
– Define entities
– Define notations
– Provide default values for attributes

Kosmas Kosmopoulos Application development with XML and Java

SchemasSchemas

• The W3C XML Schema
Language addresses several
limitations of DTDs.

• First schemas are written in XML
instance document syntax, using
tags, elements, and attributes.

• Secondly, schemas are fully
namespace aware.

• Thirdly, schemas can assign data
types like integer and date to
elements, and validate documents
not only based on the element
structure but also on the contents
of the elements.

Kosmas Kosmopoulos Application development with XML and Java

What is an XML SchemaWhat is an XML Schema

• The purpose of an XML Schema is to
define the legal building blocks of an
XML document, just like a DTD.

• An XML Schema:
– defines elements that can appear in a

document

– defines attributes that can appear in a
document

– defines which elements are child
elements

– defines the order of child elements

– defines the number of child elements

– defines whether an element is empty or
can include text

– defines data types for elements and
attributes

– defines default and fixed values for
elements and attributes

Kosmas Kosmopoulos Application development with XML and Java

Why Schemas?Why Schemas?

• XML Schemas use XML Syntax
– You don't have to learn a new language
– You can use your XML editor to edit your

Schema files
– You can use your XML parser to parse your

Schema files
– You can manipulate your Schema with the

XML DOM
– You can transform your Schema with XSLT

• When sending data from a sender to a
receiver, it is essential that both parts have
the same "expectations" about the content.
– With XML Schemas, the sender can describe

the data in a way that the receiver will
understand.

• XML Schemas are extensible, because they
are written in XML. Therefore you can:
– Reuse your Schema in other Schemas
– Create your own data types derived from the

standard types
– Reference multiple schemas in the same

document

Kosmas Kosmopoulos Application development with XML and Java

Simple ExampleSimple Example

• XML document called "note.xml":
<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this

weekend!</body>
</note>

• The following example is a DTD file
called "note.dtd"

<!ELEMENT note (to, from, heading,
body)>

<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

• The first line defines the note element to
have four child elements: "to, from, heading,
body".

• Line 2-5 defines the to, from, heading, body
elements to be of type "#PCDATA".

Kosmas Kosmopoulos Application development with XML and Java

Simple ExampleSimple Example

• The following example is an XML
Schema file called "note.xsd" that
defines the elements of the XML
document above ("note.xml"):

<?xml version="1.0"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/X
MLSchema"

targetNamespace="http://www.w3schools
.com"

xmlns="http://www.w3schools.com"
elementFormDefault="qualified">
<xs:element name="note">

<xs:complexType>
<xs:sequence>

<xs:element name="to"
type="xs:string"/>
<xs:element name="from"
type="xs:string"/>
<xs:element name="heading"
type="xs:string"/>
<xs:element name="body"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element></xs:schema>

Kosmas Kosmopoulos Application development with XML and Java

Simple ExampleSimple Example

• A Reference to a DTD
<?xml version="1.0"?><!DOCTYPE note

SYSTEM
"http://www.w3schools.com/dtd/note.dt

d"><note>

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this

weekend!</body>
</note>

• A Reference to an XML Schema
<?xml version="1.0"?><note
xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.org/2001/XML

Schema-instance"
xsi:schemaLocation="http://www.w3scho

ols.com note.xsd">

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this

weekend!</body>
</note>

Kosmas Kosmopoulos Application development with XML and Java

Schema ElementSchema Element

• The <schema> element is the root
element of every XML Schema:

<?xml version="1.0"?><xs:schema>...
...</xs:schema>

• The <schema> element may contain
some attributes. A schema declaration
often looks something like this:

<?xml version="1.0"?><xs:schema
xmlns:xs="http://www.w3.org/2001/X
MLSchema"

targetNamespace="http://www.w3schools
.com"

xmlns="http://www.w3schools.com"
elementFormDefault="qualified">...
...</xs:schema>

xmlns:xs="http://www.w3.org/2001/XMLS

chema"

• indicates that the elements and data types
used in the schema come from the
"http://www.w3.org/2001/XMLSchema"
namespace.

Kosmas Kosmopoulos Application development with XML and Java

Schema ElementSchema Element

• This fragment:
targetNamespace="http://www.w3schools

.com"

– indicates that the elements defined by
this schema (note, to, from, heading,
body.) come from the
"http://www.w3schools.com"
namespace.

• This fragment:

xmlns="http://www.w3schools.com"

– indicates that the default namespace is
"http://www.w3schools.com".

• This fragment:

elementFormDefault="qualified"

– indicates that any elements used by the
XML instance document which were
declared in this schema must be
namespace qualified.

Kosmas Kosmopoulos Application development with XML and Java

Simple ElementSimple Element

• A simple element is an XML element
that can contain only text. It cannot
contain any other elements or attributes.

• The text can be of many different types.
It can be one of the types included in the
XML Schema definition (boolean, string,
date, etc.), or it can be a custom type that
you can define yourself.

• The syntax for defining a simple element
is:

<xs:element name="xxx" type="yyy"/>

• XML Schema has a lot of built-in data
types. The most common types are:
– xs:string
– xs:decimal
– xs:integer
– xs:boolean
– xs:date
– xs:time

Kosmas Kosmopoulos Application development with XML and Java

ExampleExample

• Here are some XML elements:
<lastname>Refsnes</lastname>

<age>36</age>

<dateborn>1970-03-27</dateborn>

• And here are the corresponding
simple element definitions:

<xs:element name="lastname"
type="xs:string"/>

<xs:element name="age"
type="xs:integer"/>

<xs:element name="dateborn"

type="xs:date"/>

Kosmas Kosmopoulos Application development with XML and Java

AttributesAttributes

• How to Define an Attribute?
• The syntax for defining an attribute is:
<xs:attribute name="xxx" type="yyy"/>

• XML Schema has a lot of built-in data
types. The most common types are:
– xs:string
– xs:decimal
– xs:integer
– xs:boolean
– xs:date
– xs:time

• Here is an XML element with an
attribute:

<lastname lang="EN">Smith</lastname>

• And here is the corresponding
attribute definition:

<xs:attribute name="lang"
type="xs:string"/>

Kosmas Kosmopoulos Application development with XML and Java

RestrictionsRestrictions

• The following example defines
an element called "age" with a
restriction. The value of age
cannot be lower than 0 or greater
than 120:

<xs:element
name="age"><xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="120"/>

</xs:restriction>

</xs:simpleType></xs:element>

Kosmas Kosmopoulos Application development with XML and Java

Complex ElementsComplex Elements

• A complex element is an XML
element that contains other elements
and/or attributes.

• There are four kinds of complex
elements:
– empty elements
– elements that contain only other

elements
– elements that contain only text
– elements that contain both other

elements and text

• Note: Each of these elements may
contain attributes as well!

• An empty complex XML element:
<product pid="1345"/>

• A complex element, which contains
only other elements:

<employee>
<firstname>John</firstname>
<lastname>Smith</lastname>
</employee>

Kosmas Kosmopoulos Application development with XML and Java

Empty ElementsEmpty Elements

<product prodid="1345" />

• The "product" element above has no
content at all. To define a type with no
content, we must define a type that allows
only elements in its content, but we do not
actually declare any elements, like this:

<xs:element name="product">
<xs:complexType>

<xs:complexContent>
<xs:restriction

base="xs:integer">
<xs:attribute name="prodid"

type="xs:positiveInteger"/>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>

• We define a complex type with a complex
content. The complexContent element signals
that we intend to restrict or extend the
content model of a complex type, and the
restriction of integer declares one attribute but
does not introduce any element content.

Kosmas Kosmopoulos Application development with XML and Java

Containing ElementsContaining Elements

<person>
<firstname>John</firstname>
<lastname>Smith</lastname>

</person>

• You can define the "person" element
in a schema, like this:

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element name="firstname"

type="xs:string"/>
<xs:element name="lastname"

type="xs:string"/>
</xs:sequence>

</xs:complexType>

</xs:element>

• Notice the <xs:sequence> tag. It
means that the elements defined
("firstname" and "lastname") must
appear in that order inside a "person"
element.

Kosmas Kosmopoulos Application development with XML and Java

<letter>
Dear Mr.<name>John Smith</name>.
Your order <orderid>1032</orderid>
will be shipped on <shipdate>2001-07-

13</shipdate>.

</letter>

• The following schema declares the "letter"
element:

<xs:element name="letter">
<xs:complexType mixed="true">

<xs:sequence>
<xs:element name="name"

type="xs:string"/>
<xs:element name="orderid"

type="xs:positiveInteger"/>
<xs:element name="shipdate"

type="xs:date"/>
</xs:sequence>

</xs:complexType></xs:element>

• Note: To enable character data to appear
between the child-elements of "letter", the
mixed attribute must be set to "true". The
<xs:sequence> tag means that the elements
defined (name, orderid and shipdate) must
appear in that order inside a "letter" element.

Kosmas Kosmopoulos Application development with XML and Java

XML ProtocolsXML Protocols

• XML protocols are XML applications used
for machine-to-machine exchange of
information across the Internet over
HTTP.

Protocol applications of particular interest.
• RSS: RSS is used to exchange headlines

and abstracts between different Web
news sites.

• XML-RPC: XML-RPC supports remote
procedure calls across the Internet by
passing method names and arguments
embedded in an XML document over
HTTP.

• SOAP: Whereas XML-RPC uses only
elements, SOAP adds attributes and
namespaces as well. SOAP even lets the
body of the message be an XML element
from some other vocabulary

Kosmas Kosmopoulos Application development with XML and Java

Message FormatMessage Format

• One of the major uses of XML is for
exchanging data between heterogenous
systems.

• Since XML is natively supported on
essentially any platform of interest, you
can send data encoded in such an XML
application from point A to point B
without worrying about whether point A
and point B agree on how many bytes
there are in a float, or any of other issues
that arise when moving data between
systems.

• As long as both ends of the connection
agree on the XML application used, they
can exchange information without
worrying about what software produced
the data.
– One side can use Perl and the other Java.

One can use Windows and the other Unix.
One can run on a mainframe and the other
on a Mac.

Kosmas Kosmopoulos Application development with XML and Java

EnvelopesEnvelopes

• two systems communication
– they only talk to each other, and they

always send the same type of message, an
envelope may not be needed. It’s enough
for one system to send the other the
message in the agreed upon XML
format.

• many systems communication
– exchanging many different kinds of

messages in many different ways, it’s
useful to have some standards that are
independent of the content of the
message. This offers up some hope that
when a message in an unrecognized
format is received, it can still be
processed in a reasonable fashion.

• In XML-RPC, essentially all the mark-
up is the envelope and all the text
content is the data inside the
envelope. SOAP and RSS are a little
more complex.

Kosmas Kosmopoulos Application development with XML and Java

HTTPHTTP

• XML is just a document format. If two
systems want to exchange messages in XML
format, it is not hard for them to do so.

• XML doesn’t care how documents are
moved from point A to point B, therefore
we pick the simplest broadly supported
protocol HTTP (Hypertext Transport
Protocol)

• Using HTTP to transport XML has a
number of advantages, among them:

• HTTP is well supported by libraries in Java,
Perl, C, and other languages.

• HTTP is platform independent.
• HTTP connections normally pass through

firewalls.
• The HTTP header provides a convenient

place to store information such as the
document size and encoding.

• HTTP is very well understood in the
developer community.

Kosmas Kosmopoulos Application development with XML and Java

HTTP in JavaHTTP in Java

• Java lets you write programs that connect to
and retrieve information from web sites
with hardly any effort.

• Once you have a document in memory you
can do whatever you want with it: search it,
sort it, transform it, etc.

• Java example to retrieve such information
and dump it to the console.

• This example is a Java class that uses the
java.net.URL class to load documents via
HTTP.
– getDocumentAsInputStream() connects to a

server and returns the unread stream after
stripping off the HTTP header.

– getDocumentAsString() actually reads the entire
document, stores it in a string buffer, and then
returns a string containing the document at the
URL.

– The method that retrieves the document as an
input stream would be used if you want to
process the document as it arrives. The string
version would be used if the document wasn’t
too big and you wanted to make sure the entire
document was available before working with it.

Kosmas Kosmopoulos Application development with XML and Java

ExampleExample

• It does not have a main() method. It is not
intended to be used directly by typing java
URLGrabber at the command line. Rather
this is a library class meant for other
programs to use.

• The following is a simple program designed
just to test URLGrabber with a very basic
command line user interface.

• Here’s a simple example of using
URLGrabberTest to download the XML
document from
http://www.slashdot.org/slashdot.xml:

java URLGrabberTest
http://www.slashdot.org/slashdot.x
ml

<?xml version="1.0" encoding="ISO-
8859-1"?><backslash
xmlns:backslash="http://slashdot.org/b
ackslash.dtd"> <story>

Kosmas Kosmopoulos Application development with XML and Java

RSSRSS

• RDF Site Summary or Rich Site
Summary (sometimes referred to as
Really Simple Syndication); a set of
XML communication standards
created by Netscape.

• RSS allows a web developer to share
the content on his/her site. RSS
repackages the web content as a list of
data items, to which you can subscribe
from a directory of RSS publishers.

• RSS content usually includes news
stories, headlines, content from
discussion lists, or corporate
announcemnets and is primarily used
by news websites and weblogs.

• RSS "feeds" can be read with a web
browser or special RSS reader called a
content aggregator.

Kosmas Kosmopoulos Application development with XML and Java

XMLXML--RPCRPC

• XML-RPC is an XML application
designed to enable remote procedure calls
(RPC) over the Internet. (In Java, a procedure
call is just a method invocation. In some other

languages like C it might be called a function call.)
• It just means that some named chunk

of code somewhere is invoked with a
list of argument values of particular
types. The procedure may or may not
return a single value of a known type;

• A remote procedure call is one in which
the called procedure is not necessarily
running on the same host as the
calling procedure.

• XML-RPC was hardly the first effort
to invent a syntax for remote
procedure calls. There have been
numerous attempts previously
including CORBA and Java’s own
Remote Method Invocation (RMI).

Kosmas Kosmopoulos Application development with XML and Java

XML XML -- RPCRPC

• XML-RPC bits off the 90% of the
problem that gave developers the
features they actually needed. It
ignored the 10% of the problem that
caused 90% of the complexity in
previous RPC systems.

• At a very high level, the fundamental
idea of XML-RPC is this: An XML
document that contains a method
name and some arguments is sent to a
Web server using HTTP POST. The
server invokes the method with the
specified arguments. Then it wraps up
the return value of the method in
another XML document, and sends
that back to the client.

Kosmas Kosmopoulos Application development with XML and Java

SOAPSOAP

• XML-RPC did not go through any
sort of standardization process. For
instance, in XML-RPC the string type
is defined as an “ASCII string”.

• XML documents are Unicode, not
ASCII. Modern programming
languages like Java can handle
Unicode without any trouble.

• There is no good reason to limit
XML-RPC strings to ASCII.

• A more serious effort to enable
remote procedure calls by passing
XML documents over HTTP is
known as the Simple Object Access
Protocol.

• SOAP has been developed by a
committee of XML experts from
various companies including IBM and
Microsoft.

Kosmas Kosmopoulos Application development with XML and Java

• SOAP is a much more robust protocol
than XML-RPC. It is much better
designed from an XML standpoint as
well. It takes advantage of numerous
features of XML such as attributes,
Unicode, and namespaces that XML-
RPC either ignores or actively opposes.

• XML-RPC is adequate for simple tasks.
• SOAP can take you a lot farther.

Although there are some basic services
available using XML-RPC, the future
clearly lies with SOAP.

• The biggest conceptual difference
between SOAP and XML-RPC is that
XML-RPC exchanges a limited number
of parameters of six fixed types, plus
structs and arrays. However, SOAP
allows you to send the server arbitrary
XML elements. This is a much more
flexible approach.

